This is the Google Foobar puzzle "Prepare the Bunnies' Escape":
You have maps of parts of the space station, each starting at a prison exit and ending at the door to an escape pod. The map is represented as a matrix of 0s and 1s, where 0s are passable space and 1s are impassable walls. The door out of the prison is at the top left \$(0,0)\$ and the door into an escape pod is at the bottom right \$(w-1,h-1)\$.
Write a function
answer(map)
that generates the length of the shortest path from the prison door to the escape pod, where you are allowed to remove one wall as part of your remodeling plans. The path length is the total number of nodes you pass through, counting both the entrance and exit nodes. The starting and ending positions are always passable (0). The map will always be solvable, though you may or may not need to remove a wall. The height and width of the map can be from 2 to 20. Moves can only be made in cardinal directions; no diagonal moves are allowed.Test cases
Input:
maze = [[0, 1, 1, 0], [0, 0, 0, 1], [1, 1, 0, 0], [1, 1, 1, 0]]
Output:
7
Input:
maze = [[0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0]]
Output:
11
My approach is to make a list of removable walls and then by removing them one at a time in a loop, do a BFS search for the shortest path. At the end, I return the shortest path overall.
I have the following code that works. However, when I deal with larger matrices, it becomes very slow and I can't get past the test code due to exceeding the time limit.
I was wondering if there is a problem in my algorithm or there would be a better approach to this problem.
class Queue: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def enqueue(self, item): self.items.insert(0,item) def dequeue(self): return self.items.pop() def size(self): return len(self.items)def adjacent_to(maze_dim, point): neighbors = ( (point[0]-1, point[1]), (point[0], point[1]-1), (point[0], point[1]+1), (point[0]+1, point[1])) for p in neighbors: if 0 <= p[0] < maze_dim[0] and 0 <= p[1] < maze_dim[1]: yield pdef removable(maz, ii, jj): counter = 0 for p in adjacent_to((len(maz),len(maz[0])), (ii, jj)): if maz[p[0]][p[1]] == 0: counter += 1 if counter >= 2: return True else: return Falsedef answer(maze): path_length = 0 if not maze: return dims = (len(maze), len(maze[0])) end_point = (dims[0]-1, dims[1]-1) # list of walls that can be removed passable_walls = [0] for i in xrange(dims[0]): for j in xrange(dims[1]): if maze[i][j] == 1 and removable(maze, i, j): passable_walls.append((i, j)) shortest_path = 0 best_possible = dims[0] + dims[1] - 1 path_mat = [[None] * dims[1] for _ in xrange(dims[0])] # tracker matrix for shortest path path_mat[dims[0]-1][dims[1]-1] = 0 # set the starting point to destination (lower right corner) for i in xrange(len(passable_walls)): temp_maze = maze if passable_walls[i] != 0: temp_maze[passable_walls[i][0]][passable_walls[i][1]] = 0 stat_mat = [['-'] * dims[1] for _ in xrange(dims[0])] # status of visited and non visited cells q = Queue() q.enqueue(end_point) while not q.isEmpty(): curr = q.dequeue() if curr == (0,0): break for next in adjacent_to(dims, curr): if temp_maze[next[0]][next[1]] == 0: # Not a wall temp = path_mat[curr[0]][curr[1]] + 1 if temp < path_mat[next[0]][next[1]] or path_mat[next[0]][next[1]] == None: # there is a shorter path to this cell path_mat[next[0]][next[1]] = temp if stat_mat[next[0]][next[1]] != '+': # Not visited yet q.enqueue(next) stat_mat[curr[0]][curr[1]] = '+' # mark it as visited if path_mat[0][0]+1 <= best_possible: break if shortest_path == 0 or path_mat[0][0]+1 < shortest_path: shortest_path = path_mat[0][0]+1 return shortest_pathmaze = [[0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0]]# maze = [# [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]# ]# maze = [# [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]# ]print answer(maze)